359 research outputs found

    Experimental Investigation of Turbulence Specifications of Turbidity Currents

    Get PDF
    The present study investigates the turbulence characteristic of turbidity current experimentally. The three-dimensional Acoustic-Doppler Velocimeter (ADV) was used to measure the instantaneous velocity and characteristics of the turbulent flow. The experiments were conducted in a three-dimensional channel for different discharge flows, concentrations, and bed slopes. Results are expressed at various distances from the inlet, for all flow rates, slopes and concentrations as the distribution of turbulence energy, Reynolds stress and the turbulent intensity. It was concluded that the maximum turbulence intensity happens in both the interface and near the wall. Also, it was observed that the turbulence intensity reaches its minimum where maximum velocity occurs

    Transition of Dislocation Structures in Severe Plastic Deformation and Its Effect on Dissolution in Dislocation Etchant

    Get PDF
    © 2018 Muhammad Rifai et al. Transition of dislocation structures in ultrafine-grained copper processed by simple shear extrusion (SSE) and its effects on dissolution were manifested by simple immersion tests using a modified Livingston dislocation etchant, which attacks dislocations and grain boundaries selectively. The SSE process increased the internal strain evaluated by X-ray line broadening analysis until eight passes but decreased it with further extrusion until twelve passes. The weight loss in the immersion tests reflected the variation in the internal strain: namely, it increased until eight passes and then decreased with further extrusion to twelve passes. Taking our previous report on microstructural observation into account, it is suggested that variation in the internal strain is caused by both the variation in dislocation density and structural change of grain boundaries from equilibrium to nonequilibrium states or vice versa. Decreased dislocation density and structural change back to equilibrium state of grain boundaries in very high strain range by possibly dynamic recovery as pointed out by Dalla Torre were validated by X-ray and dissolution in the modified Livingston etchant in addition to the direct observation by TEM reported in our former report

    Role of strain reversal in microstructure and texture of pure al during non-monotonic simple shear straining

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Dyestuff is one of the most widely released pollutants into the environment. Many approaches have been considered to deal with the dye removal from polluted water such as adsorption, ultrafiltration, osmosis, solvent extraction and photocatalytic degradation. The photocatalytic degradation process is one of the most beneficial, economical and environmentally friendly ways to degrade the organic pollutants from wastewater. In this study, an efficient ferrite-based photocatalyst, AgFeO2/rGO/TiO2 was successfully developed using simple deposition and reflux method. Physical, chemical and structural properties were analyzed by using XRD, FTIR Raman and PL spectroscopy. The efficiency of photocatalyst was investigated for the decolorization of methyl blue (MB) dye and activity was measured through UV-vis spectroscopy. The effect of parameters like pH, concentrations of MB dye, and loading of silver ferrite (AgFeO2) was investigated. The study depicted that the properties of TiO2 were improved due to addition of silver ferrite and reduced graphene oxide (rGO). The 2.5% AgFeO2/rGO/TiO2 exhibited the highest efficiency and completely degraded the 50 ppm of MB dye in 30 min. The parametric study revealed that dye decolorization is faster in a neutral solution than in basic and acidic medium. The higher performance of the photocatalyst was attributed to the reduced charge recombination and improved optical properties. Thus, AgFeO2/rGO/TiO2 can be a potential composite for photocatalytic dye degradation and other photocatalytic applications under UV-Visible light irradiations

    Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO

    Full text link
    [EN] Adopting the Standard Halo Model (SHM) of an isotropic Maxwellian velocity distribution for dark matter (DM) particles in the Galaxy, the most stringent current constraints on their spin-dependent scattering cross-section with nucleons come from the IceCube neutrino observatory and the PICO-60 C3F8 superheated bubble chamber experiments. The former is sensitive to high energy neutrinos from the self-annihilation of DM particles captured in the Sun, while the latter looks for nuclear recoil events from DM scattering off nucleons. Although slower DM particles are more likely to be captured by the Sun, the faster ones are more likely to be detected by PICO. Recent N-body simulations suggest significant deviations from the SHM for the smooth halo component of the DM, while observations hint at a dominant fraction of the local DM being in substructures. We use the method of Ferrer et al. (JCAP 1509: 052, 2015) to exploit the complementarity between the two approaches and derive conservative constraints on DM-nucleon scattering. Our results constrain sigma SD less than or similar to 3x10-39cm2 (6x10-38cm2) at greater than or similar to 90% C.L. for a DM particle of mass 1 TeV annihilating into tau+tau- (bb) with a local density of rho DM=0.3GeV/cm3. The constraints scale inversely with rho DM and are independent of the DM velocity distribution.Aartsen, MG.; Ackermann, M.; Adams, J.; Aguilar, JA.; Ahlers, M.; Ahrens, M.; Alispach, C.... (2020). Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO. The European Physical Journal C. 80(9):1-8. https://doi.org/10.1140/epjc/s10052-020-8069-5S18809F. Ferrer, A. Ibarra, S. Wild, JCAP 1509(09), 052 (2015). arXiv:1506.03386 [hep-ph]S. van den Bergh, Publ. Astron. Soc. Pac. 111, 657 (1999). arXiv:astro-ph/9904251G. Bertone, D. Hooper, J. Silk, Phys. Rept. 405, 279 (2005). arXiv:hep-ph/0404175A.K. Drukier, K. Freese, D.N. Spergel, Phys. Rev. D 33, 3495 (1986)M. Kuhlen, N. Weiner, J. Diemand, P. Madau, B. Moore, D. Potter, J. Stadel, M. Zemp, JCAP 1002, 030 (2010). arXiv:0912.2358 [astro-ph.GA]M. Lisanti, L.E. Strigari, J.G. Wacker, R.H. Wechsler, Phys. Rev. D 83, 023519 (2011). arXiv:1010.4300 [astro-ph.CO]Y.Y. Mao, L.E. Strigari, R.H. Wechsler, H.Y. Wu, O. Hahn, Astrophys. J. 764, 35 (2013). arXiv:1210.2721 [astro-ph.CO]L. Necib, M. Lisanti, V. Belokurov, arXiv:1807.02519 [astro-ph.GA]N.W. Evans, C.A.J. O’Hare, C. McCabe, Phys. Rev. D 99(2), 023012 (2019). arXiv:1810.11468 [astro-ph.GA]M.G. Aartsen et al. [IceCube Collaboration], Eur. Phys. J. C 77, no. 3, 146 (2017) arXiv:1612.05949 [astro-ph.HE]C. Amole et al., [PICO Collaboration]. Phys. Rev. Lett. 118(25), 251301 (2017). arXiv:1702.07666 [astro-ph.CO]M.T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar, K. Schmidt-Hoberg, JCAP 1201, 024 (2012). arXiv:1111.0292 [hep-ph]K. Choi, C. Rott, Y. Itow, JCAP 1405, 049 (2014). arXiv:1312.0273 [astro-ph.HE]A. Achterberg et al., [IceCube Collaboration]. Astropart. Phys. 26, 155 (2006). arXiv:astro-ph/0604450R. Abbasi et al. [IceCube Collaboration], Nucl. Instrum. Meth. A 601, 294 (2009) arXiv:0810.4930 [physics.ins-det]M.G. Aartsen et al. [IceCube Collaboration], JINST 12, no. 03, P03012 (2017) arXiv:1612.05093 [astro-ph.IM]R. Abbasi et al., [IceCube Collaboration]. Astropart. Phys. 35, 615 (2012). arXiv:1109.6096 [astro-ph.IM]G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998). https://doi.org/10.1103/PhysRevD.57.3873. arXiv:physics/9711021 [physics.data-an]M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no. 3, 030001 (2018)C. Amole et al. [PICO Collaboration], arXiv:1905.12522 [physics.ins-det]C. Amole et al. [PICO Collaboration], Phys. Rev. D 93, no. 5, 052014 (2016) arXiv:1510.07754 [hep-ex]E. Tollerud et al. [ERFA] Computational Science and Discovery, no 8, 1 (2015) https://doi.org/10.5281/zenodo.1021149J.N. Bahcall, R.K. Ulrich, Rev. Mod. Phys. 60, 297 (1988)T. Mumford et al. [SunPy Community] Computational Science and Discovery, no 8, 1 (2015) arXiv:1505.02563 [astro-ph]V. Gluscevic, M.I. Gresham, S.D. McDermott, A.H.G. Peter, K.M. Zurek, JCAP 1512(12), 057 (2015). arXiv:1506.04454 [hep-ph]A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, ‘, JCAP 1302, 004 (2013). https://doi.org/10.1088/1475-7516/2013/02/004. arXiv:1203.3542 [hep-ph]A. Ibarra, A. Rappelt, JCAP 1708(08), 039 (2017). arXiv:1703.09168 [hep-ph
    corecore